CONCEPT-II

CONCEPT-II is a frequency domain method of moment (MoM) code, under development at the Institute of Electromagnetic Theory at the Technische Universität Hamburg-Harburg (<u>www.tet.tuhh.de</u>).

Overview of demo examples

The following demonstration examples for CONCEPT-II will be discussed in detail (\$CONCEPT: home directory of the package):

- 1. Wire loop, directory \$CONCEPT/demo/example1-wire-loop
- 2. Cylindrical monopole antenna radiating over a finite ground plate, directory \$CONCEPT/demo/example2-monopole-on-plate
- 3. Box with aperture and internal radiator, directory \$CONCEPT/demo/example3-boxwith-aperture
- 4. Dielectric sphere in a plane wave field, directory \$CONCEPT/demo/example4dielectric-sphere

To find out how CONCEPT-II works it is recommended to start with example 1 (wire loop) Important: file names should never contain blanks.

Shortcuts: Help -> Navigation

Example 3: Box with aperture and internal dipole antenna

It is assumed that the user is already familiar with examples 1 and 2.

It is recommended to start from an empty directory and set up the simulation according to Fig 1.

\$CONCEPT/demo/example3-box-with-aperture

The structure under investigation is shown in Fig 1: It is a PEC cube with internal dipole antenna. Note that the dipole antenna consists of a narrow strip of triangular patches. As the antenna is more or less surrounded by PEC walls this example forms a challenge for a numerical computation. Galerkin testing is activated, see last item of the project tree. The applied frequency is 300 MHz. The internal dipole is fed by 1 W. Hence this power must completely go through the aperture as no other loss mechanism is present.

Fig 1: PEC cube with aperture and internal radiator (center-driven strip of patches)

As we have electrical and geometrical symmetry only half of the box needs to be discretized. The x-z plane is a plane of magnetic symmetry.

Creating the box with aperture (surf.box)

- Edge length of the cube is 1m
- Cad tools \rightarrow (tool bar)
 - P1(xyz): 0 0 0
 - P7(x,y,z): 1 0.5 1
 - 300 MHz, 8 patches per wavelength
 - Magnetic symmetry: Symmetry with respect to the XZ plane
 - Deactivate: 'Set all patches to triangles'
- Erase the patches at the location of the aperture. For the position of the aperture notice Fig 1.
 - \circ Use the rubber tool for this purpose: $\circ \mathscr{A}$. Mark the patches, then update
 - Refine the patches around the aperture using the following refinement pattern Mesh refinement

ه 🗄 💿

Creating the dipole antenna strip (antenna.surf)

	22 •			CONCEPT-II CAI)			2 🗢 🛇 🛪	
Cad tools 2	1	Discretization o	of quadra	angular plates, r	nonunif	orm mesh pos	sible		
patch nodes	Output file	antenna.surf							
le(s) to patch nodes	Number of parts:	1		Copy from part:	1		\$	ОК	
1.e-3	Current part:	1 \$			Delete	current part	¢	ОК	
x axis 🗘 🗅 Centre	Corner 1 x:	0.5	y:	0	z: 0	0.25			
90.00	Corner 2 x:	0.51	y:	0	z: 0	0.25			
Enter shift values	Corner 3 x:	0.51	у:	0	z: 0	0.75			H H
) 1.000	Corner 4 x:	0.5	y:	0	z: 0	0.75			
Centre	Frequency in MHz:		No. bf/wl:	8	Comp	oute meshes			
x point	Meshes: 1-2	1	2-3	12	3-4	1	1-4	12	
y point	Compr.: 1-2	1	2-3	1	3-4	1	1-4	1	H
z point	Save	Read							
ect File									
antenna.surf	√	Apply		🖋 ОК			Oar	icel	H
		Z							
		· · · · · · · · · · · · · · · · · · ·							
			x x						N
									H
									N
									Ν

• The antenna is located in the center of the box

Fig 2: Creating the antenna strip

• Use the plate tool \square to create the strip antenna. **Cad tools**, \rightarrow **Cad tools 2**, see Fig 2. The length of the strip is 0.5 m and the width is 1 cm

Convert all quadrangles of the box and the antenna strip into triangles by clicking on $\Box \Box$ (tool bar)

Deactivation of the check mark left to a wire or surface patch file (project tree, **Cad tools 1**) makes the structure part become invisible, but it is still loaded.

Check the length and the width of the patch strip by using the ruler [1] (tool bar, see Fig 3)

Fig 3: Selecting two nodes by right mouse click provides the distance between the nodes. The patches of the strip are lying in the x-z plane. The y coordinates of all strip nodes are 0.

Setting the edge generator, frequency, symmetry, and MoM testing method

Click on **Simulation** and load the files from the cad section. *Antenna.surf* and *surf.box* automatically appear under **Surfaces** entry (simulation project tree)

Section Setup structure:

Set check mark: 'Magn. symmetry, XZ plane'

Section Setup simulation

Excitation \rightarrow **Ports (power input/voltage input)** \rightarrow window opens \rightarrow (Turn mouse wheel for zooming in) \rightarrow right click on the center edge of the strip antenna \rightarrow a generator symbol

appears \rightarrow eventually change direction by a second click. Choose 1 W as input power.

Frequencies → Single frequency → enter 300 MHz

For a high precision computation: activate the check mark 'Galerkin matching' as indicated in Fig 1.

Run the back end.

Displaying the 3D radiation diagram together with the structure

Fig 4: Application of the move-scale tool

- Go to Post processing

- Click on 🚱 (create a 3D radiation diagram, activate: 'High precision integration for far field')

- Click on . The structure under investigation is shown in the display area together with

the radiation diagram. Both structures intersect each other

- Post processing tree: The file names *rad.1* and *surf.0* appear under **Surfaces**

- Right click on **rad.1** \rightarrow **Move/scale...** \rightarrow a sub-window opens. Enter values as shown in Fig 4 and click **Apply.** Box and cavity are well separated now.

- File \rightarrow Save image as (Choose format and picture name and save image of the display area onto the hard disk)

- Check the power budget (Log data \rightarrow 3D rad. diagram): 0.989 W are computed in the far field, 1 W was the input power (3D radiation diagram: a 80x80 grid has been assumed on the unit sphere)

Placing a load on a patch edge

Click the **Simulation** tab. Under Surfaces (entry of the simulation project tree), right click on **Load(s) on patch edges** \rightarrow **Set edge load(s)**, see next figure.

A window according to Fig 5 opens

CONCEPT-II edge load(s)												
Loads on edges												
Only on PEC, not on body boundaries												
Right click on an edge to set a load												
Coordinate file box-with-aperture-loa	ds.in				++							
Circuitry identifier R in	Ohm L in Microhenry	C in Nanofarad	File name									
Load 1 series R,L 🗸 50.	0.	No value	No value									
Set global V From load 1 🗘 T	oload 1 🗘 Rin	Ohm 🖓		Do	$\left \right\rangle$							
🛷 Apply	«РОК		Cancel		$ \rangle$							

Fig 5: Window for setting edge loads

Right click on an edge \rightarrow The load symbol appears over the edge \rightarrow enter the values of

the lumped load, here 50 Ω as inner resistance of the edge generator. Change symbol color and size by **Options** \rightarrow **Modify elements...**